1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
| from langchain_openai import ChatOpenAI from langchain_core.messages import BaseMessage from langchain_core.messages import HumanMessage, SystemMessage, trim_messages, AIMessage from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langgraph.checkpoint.memory import MemorySaver from langgraph.graph import START, MessagesState, StateGraph from langgraph.graph.message import add_messages from typing import Sequence from typing_extensions import Annotated, TypedDict
class State(TypedDict): messages: Annotated[Sequence[BaseMessage], add_messages] language: str
class AIChat(): def __init__(self): self.model = ChatOpenAI(model="gpt-4o-mini")
self.prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are a helpful assistant. Answer all questions to the best of your ability in {language}.", ), MessagesPlaceholder(variable_name="messages"), ] )
self.memory = MemorySaver()
self.trimmer = trim_messages( max_tokens=65, strategy="last", token_counter=self.model, include_system=True, allow_partial=False, start_on="human", )
def call_model(self, state: State): chain = self.prompt | self.model trimmed_messages = self.trimmer.invoke(state["messages"]) response = chain.invoke( {"messages": trimmed_messages, "language": state["language"]} ) return {"messages": [response]}
def create_graph(self): workflow = StateGraph(state_schema=State) workflow.add_edge(START, "model") workflow.add_node("model", self.call_model) app = workflow.compile(checkpointer=self.memory) return app
def chat(self): config = {"configurable": {"thread_id": "abc123"}} language = "Chinese"
app = self.create_graph()
while True: query = input("请输入问题:") input_messages = [HumanMessage(query)] for chunk, metadata in app.stream( {"messages": input_messages, "language": language}, config, stream_mode="messages", ): if isinstance(chunk, AIMessage): print(chunk.content, end="") print('\n')
if __name__ == "__main__": AIChat().chat()
|